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We consider the extended two-dimensional t-t�-t�-J model at zero temperature. Parameters of the model
corresponds to doping by holes. Using the low doping effective action, we demonstrate that the system can: �1�
preserve the long-range collinear antiferromagnetic order, �2� lead to a spin spiral state �static or dynamic�, and
�3� lead to the phase-separation instability. We show that at parameters of the effective action corresponding to
the single-layer cuprate La2−xSrxCuO4, the spin spiral ground state is realized. We derive properties of mag-
netic excitations and calculate quantum fluctuations. Quantum fluctuations destroy the static spin spiral at the
critical doping xc�0.11. This is the point of the quantum phase transition to the spin-liquid state �dynamic spin
spiral�. The state is still double degenerate with respect to the direction of the dynamic spiral, so this is a
“directional nematic.” The superconducting pairing exists throughout the phase diagram and is not sensitive to
the quantum phase transition. We also compare the calculated neutron-scattering spectra with experimental
data.
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I. INTRODUCTION

The phase diagram of the prototypical cuprate supercon-
ductor La2−xSrxCuO4 �LSCO� shows that the magnetic state
changes tremendously with Sr doping. The three-
dimensional antiferromagnetic �AF� Néel order identified1

below 325 K in the parent compound disappears at doping
x�0.02 and gives way to the so-called spin-glass phase
which extends up to x�0.055. In both the Néel and the
spin-glass phase, the system essentially behaves as an Ander-
son insulator and exhibits only hopping conductivity. Super-
conductivity then sets in for doping x�0.055, see Ref. 2.
One of the most intriguing properties of LSCO is the static
incommensurate magnetic ordering observed at low tempera-
ture in elastic neutron-scattering experiments. This ordering
manifests itself as a scattering peak shifted with respect to
the antiferromagnetic position. Very importantly, the incom-
mensurate ordering is a generic feature of LSCO. According
to experiments in the Néel phase, the incommensurability is
almost doping independent and directed along the ortho-
rhombic b axis.3 In the spin-glass phase, the shift is also
directed along the b axis, but scales linearly with doping.4–6

Finally, in the underdoped superconducting region �0.055
�x�0.12�, the shift still scales linearly with doping, but it is
directed along the crystal axes of the tetragonal lattice.7 Very
recent studies also reveal the evolution of inelastic neutron
spectra with doping.8

Near x=0.12, certain La-based materials develop a
strongly enhanced static incommensurate magnetic order ac-
companied by small lattice deformation at the second-order
harmonics,9–11 see also Ref. 12 for a review.

Incommensurate features have also been observed in in-
elastic neutron scattering from YBa2Cu3O6+y �YBCO�.13–19

In underdoped YBCO, there is a rather large uncertainty in
the determining of the doping level. However, it seems that
the incommensurability in YBCO is about 30%–40% smaller
than that in LSCO, comparing the same doping level. In a

very recent work,20 the electronic liquid crystal state in un-
derdoped YBCO has been reported. The state has no static
spins, but nevertheless, it demonstrates a degeneracy with
respect to the direction of the dynamic spin structure. In
addition, there are indications that the electronic liquid crys-
tal state observed in Ref. 20 is very close to a quantum phase
transition to a state with static spins.

The two-dimensional �2D� t-J model was suggested two
decades ago to describe the essential low-energy physics of
high-Tc cuprates.21–23 In its extended version, this model in-
cludes additional hopping matrix elements t� and t� to
second- and third-nearest Cu neighbors. The Hamiltonian of
the t-t�-t�-J model on the square Cu lattice has the form:

H = − t �
�ij��

ci�
† cj� − t� �

�ij���

ci�
† cj�� − t� �

�ij���

ci�
† cj��

+ J �
�ij��

�SiS j −
1

4
NiNj� . �1�

Here, ci�
† is the creation operator for an electron with spin �

��= ↑ ,↓� at site i of the square lattice, �ij� indicates first-,
�ij�� second-, and �ij�� third-nearest-neighbor sites. The spin
operator is Si=

1
2ci�

† ���ci�, and Ni=��ci�
† ci� with �Ni�=1−x

being the number density operator. In addition to Hamil-
tonian �1�, there is the constraint of no double occupancy,
which accounts for strong electron correlations. The values
of the parameters of Hamiltonian �1� for LSCO are known
from neutron scattering,1 Raman spectroscopy,24 and ab ini-
tio calculations.25 The values are: J�140 meV, t
�450 meV, t��−70 meV, and t��35 meV. Hereafter, we
set J=1, hence we measure energies in units of J.

The idea of spin spirals in the t-J model at finite doping
was first suggested in Ref. 26. The idea had initially attracted
a lot of attention, see e.g., Refs. 27–30. However, it has been
soon realized that there was a fundamental unresolved theo-
retical problem of stability of the spiral.30 Together with lack

PHYSICAL REVIEW B 78, 014501 �2008�

1098-0121/2008/78�1�/014501�12� ©2008 The American Physical Society014501-1

http://dx.doi.org/10.1103/PhysRevB.78.014501


of experimental confirmations, this was a very discouraging
development. The observation of static and quasistatic in-
commensurate peaks in neutron scattering caused a renewal
of theoretical interest in the idea of spin spirals in
cuprates.31–39 It has been realized that in LSCO, the charge
disorder related to a random distribution of Sr ions plays a
crucial role and in the insulating state, x�0.055, the disorder
qualitatively influences the problem of stability of the spiral.
The point is that in the insulating state, the mobile holes are
not really mobile, they are trapped in shallow hydrogenlike
bound states near Sr ions. The trapping leads to the diagonal
spin spiral.34,37–39 Percolation of the bound states gives way
to superconductivity, and in the percolated state, the spin
spiral must be directed along crystal axes of the tetragonal
lattice.34 So the percolation concentration is xper=0.055. The
rotation of the direction of the spin spiral is dictated by the
Pauli exclusion principle. The disorder at x�0.055 is still
pretty strong. However, unlike in the insulating phase, the
disorder does not play a qualitative role and therefore in the
first approximation, one can disregard it. Thus, we arrive at
the case of small uniform doping. This is the problem we
address in the present work.

As we already mentioned, the case of an uniform spin
spiral �no external disorder� in a doped quantum antiferro-
magnet has an inherent theoretical problem. If considered in
the semiclassical approximation, the out-of-plane magnon is
marginal and in the end this implies an instability of the spin
spiral.30 An attempt to fix the problem by account of quan-
tum fluctuations within the 1 /S spin-wave theory was done
in Ref. 32. We understand now that, while being qualitatively
correct, the work32 did not account for all relevant quantum
fluctuations. The effective action method is much more pow-
erful than the 1 /S expansion because the method accounts
for all symmetries exactly and generates a regular expansion
in powers of doping x, this is the true chiral perturbation
theory. This is why, in the present work, we employ the
effective action method.

The structure of the paper is the following. In Sec. II, we
discuss the effective low-energy action of the modified t-J
model. Section III addresses the issue of stability of the Néel
state under doping. The spiral ground state in the mean-field
approximation is considered in Sec. IV. The in-plane mag-
nons are discussed in Sec. V and out-of-plane magnons in
Sec. VI. Section VII addresses the quantum fluctuations and
the quantum phase transition to the directional nematic. Fi-
nally, discussion and comparison with experiments is pre-
sented in the Sec. VIII.

II. EFFECTIVE LOW-ENERGY ACTION OF 2D t-t�-t�-J
MODEL AT SMALL DOPING

At zero doping �no holes�, the t-J model is equivalent to
the Heisenberg model and describes the Mott insulator
La2CuO4. The removal of a single electron from this Mott
insulator, or in other words the injection of a hole, allows the
charge carrier to propagate. Single-hole properties of the t-J
model are well understood, see Ref. 41 for a review. A cal-
culation of the hole dispersion at values of parameters t, t�,
and t� corresponding to the single-layer cuprate LSCO has

been performed in Ref. 32 using the self-consistent born ap-
proximation �SCBA�, see also Ref. 37. According to this
calculation, the dispersion of the hole dressed by magnetic
quantum fluctuations has minima at the nodal points q0
= ��	 /2, �	 /2�, and it is practically isotropic in the vicin-
ity of each point,


�p� �
1

2
�p2, �2�

where p=q−q0. We set the lattice spacing to unity, 3.81 Å
→1. The SCBA approximation gives ��2.2�300 meV.

The effective mass corresponding to this value is approxi-
mately twice the electron mass, and this agrees with recent
measurement of Shubnikov–de Haas oscillations.40 In the
present work, we use � as a fitting parameter. We will see
that to fit inelastic neutron data at x=0.1, we need

� � 2.7. �3�

This agrees well with the value obtained within the SCBA.
The quasiparticle residue Z at the minimum of the dispersion
is Z�0.38.32 In the full-pocket description, where two half-
pockets are shifted by the AF vector QAF= �	 ,	�, the two
minima are located at Sa= � 	

2 , 	
2 � and Sb= � 	

2 ,− 	
2 �. The sys-

tem is thus somewhat similar to a two-valley semiconductor.
The relevant energy scale for small uniform doping at

zero temperature is of the order of xJ�J, relevant momenta
are also small, q�1. Hence, one can simplify the Hamil-
tonian of the t-J model by integrating out all high-energy
fluctuations. This procedure leads to the effective Lagrangian
or effective action. The effective Lagrangian has been first
discussed quite some time ago,26,42,43 see also a recent
work.44 That discussion resulted in the kinematic structure of
the effective Lagrangian valid in the static limit.26 This limit
is sufficient only for the mean-field approximation. The time-
dependent terms that are necessary for excitations and quan-
tum fluctuations have been derived only recently.39 The ef-
fective Lagrangian can be written in terms of the bosonic n�
field that describes the staggered component of the copper
spins and in terms of fermionic holons �. We use the term
“holon” instead of “hole” because spin and charge are to
some extent separated, see discussion below. The holon has a
pseudospin that originates from two sublattices, so the fermi-
onic field � is a spinor acting on pseudospin. For the hole-
doped case, the effective Lagrangian reads

L =

�

2
n�̇2 −

�s

2
��n��2 + �

�
	 i

2

��

†Dt�� − �Dt���†���

− ��
†
��P��� + �2g���

†�� ��� · 
n� � �e� · ��n��
 . �4�

The first two terms in the Lagrangian represent the usual
nonlinear � model, the field n� is the subject of the constraint
n2=1. The magnetic susceptibility and the spin stiffness are

��0.53 /8�0.066 and �s�0.18.45 These values are
slightly different from that found in Ref. 46. We use the most
recent result,45 see also comment.47 Note that �s is the bare
spin stiffness, therefore by definition, it is independent of
doping. It is pointless to introduce a renormalized effective
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spin stiffness that depends on doping. The excitation spec-
trum cannot be described by an effective stiffness.

The rest of the Lagrangian in Eq. �4� represents the fer-
mionic holon field and its interaction with the n� field. The
coupling constant is,28 g�Zt�1. The index �=a ,b �flavor�
indicates the location of the holon in momentum space �ei-
ther in pocket Sa or Sb�. The kinematic structure of the cou-
pling term was first derived in Ref. 26. The operator �� is a
pseudospin that originates from the existence of two sublat-
tices, and e�= �1 /�2, �1 /�2� is a unit vector orthogonal to
the face of the magnetic Brillouin zone �MBZ� where the
holon is located. Kinetic energy of the holon, 
��p�, is qua-
dratic in the momentum p and generally speaking, it can be
anisotropic. However, in LSCO, the anisotropy is small and
we use the isotropic approximation 
Eq. �2��.

A very important point is that the argument of 
 in Eq. �4�
is a “long” �covariant� momentum,26

P = − i � +
1

2
�� · 
n� � �n�� . �5�

An even more important point is that the time derivatives
that stay in the kinetic energy of the fermionic field are also
long �covariant�,39

Dt = �t +
i

2
�� · 
n� � n�̇� . �6�

The covariant time derivatives result in the “Berry phase
term,”39 − 1

2��
†�� �� · 
n� �n�̇�, that is crucially important for ex-

citation spectrum and hence for stability of the system with
respect to quantum fluctuations.

Generally speaking, there are also quartic in fermion op-
erators terms in the effective Lagrangian. However, these
terms are not important at low doping and therefore we dis-
regard them in Eq. �4�.

The effective Lagrangian �4� is valid regardless if the n�
field is static or dynamic. In other words, it does not matter if
the ground-state expectation value of the staggered field is
nonzero, �n���0, or zero, �n��=0. The only condition for va-
lidity of Eq. �4� is that all dynamic fluctuations of the n� field
are slow, 1 /��J, where � is the typical time scale of the
fluctuations. We will demonstrate below that the dimension-
less parameter

� =
2g2

	��s
�7�

plays an important role in the theory. If ��1, the ground
state corresponding to the Lagrangian �4� is the collinear
Néel state and it stays collinear at any small doping. If 1
���2, the Néel state is unstable at arbitrary small doping
and the ground state is static or dynamic spin spiral. Whether
the spin spiral is static or dynamic depends on doping. If �
�2, the system is unstable with respect to phase separation,
and hence the effective long-wavelength Lagrangian �4� is
meaningless. Thus,

� � 1, Neel state

1 � � � 2, Spiral state, static or dynamic

� � 2, Phase separation. �8�

For LSCO the value is ��1.3–1.5.
We would like to stress once more that spin and charge to

some extent are separated in the effective low-energy La-
grangian �4�, this is why we use the term holon instead of
hole. The holon carries pseudospin, it carries charge, but it
does not carry spin in the usual sense. However, it is not the
full spin-charge separation like in one-dimensional �1D�
models. To illustrate this point, it is instructive to look at the
holon interaction with uniform external magnetic field.37,39

�LB =
1

2
�B� · n����

†��� · n����. �9�

Since we only want to stress the spin dynamics, this inter-
action does not include terms that originate from the long
derivative with respect to magnetic vector potential
−i� →−i�− e

cA, describing the interaction of the magnetic
field with the electric charge. Clearly the interaction 
Eq. �9��
is quite unusual and this is what we call “the partial spin-
charge separation.” The holon does not interact directly with
the staggered magnetic field �neutron scattering�.

III. CRITERION OF STABILITY OF THE NÉEL PHASE
UNDER DOPING

One can consider the coupling constant g in the Lagrang-
ian �4� as a formal parameter. It is clear that the Néel order
must be stable at a sufficiently small g,

n� � n�0 = �0,0,1� . �10�

In this case, the two hole pockets are populated by holons
with pseudospin “up” and “down,” and hence the Fermi mo-
mentum �radius of the pocket� is

pF = �	x , �11�

where x is doping. The Lagrangian �4� can be split in the
diagonal and off-diagonal part with respect to transverse spin
waves n�=n�= �nx� iny� /�2.

L = L0 + L1,

L0 =

�

2
ṅ�

2 −
�s

2
�1 +

�x

4�s
���n��2

+ �
�
� i

2

��

†�̇� − �̇�
†��� − ��

†
�p���� ,

L1 = �
�

��
†�−

1

2
n�0
n�̇� � �� � −

�

4
�p,n�0
�n�� � �� ��

+ �2gn�0
�e� · �n��� � �� ����. �12�

Here, �. . . , . . .� stands for the anticommutator. Using the sec-
ond quantization representation for the n� field,
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n� = �
q

1
�2
��q

�ei�qt−iq·rm�,q
† + e−i�qt+iq·rm�,q� ,

with the magnon creation and annihilation operators m�,q
†

and m�,q, we find the “bare” magnon dispersion

�q
2 = c2q2�1 +

�x

4�s
�, c2 =

�s


�

, �13�

and the pseudospin-flip magnon-holon vertex M shown in
Fig. 1,

M = i� 2


�
	�2g�e� · q� +

�

2
+

1

2


�p� − 
�p + q��
 .

�14�

Looking at Eq. �13�, one can conclude superficially that mag-
nons are hardened by doping. However, they are not hard-
ened, they are softened. To see this, we need to calculate the
magnon polarization operator that is due to L1. The operator
reads

PN��,q� =
2


�
�
p,�

fp�1 − fp+q�
��2g�e� · q� + �

2 + 1
2 

�p� − 
�p + q���2


�p� + � − 
�p + q� + i0

+
2


�
�
p,�

fp�1 − fp−q�
��2g�e� · q� + �

2 + 1
2 

�p − q� − 
�p���2


�p� − � − 
�p − q� + i0
, �15�

where fp is the usual Fermi-Dirac step function. Equation
�15� can be transformed to

PN��,q� = −
�c2x

4�s
q2 + 2P0��,q� ,

P0��,q� =
2c2g2

�s
q2�

p
fp�1 − fp+q�� 1


�p� + � − 
�p + q� + i0

+
1


�p� − � − 
�p + q� + i0
� . �16�

An explicit expression for the polarization operator P0 reads

Re P0��,q� = −
c2g2

	�2�s
��q2 − R1

�1 − R0
2/R1

2��1 − R0
2/R1

2�

− R2
�1 − R0

2/R2
2��1 − R0

2/R2
2�� ,

Im P0��,q� = −
c2g2

	�2�s
���R0

2 − R1
2��R0

2 − R1
2

− �R0
2 − R2

2��R0
2 − R2

2�� ,

R0 = �qpF, R1 =
1

2
�q2 − �, R2 =

1

2
�q2 + � . �17�

The Fermi momentum pF is given by Eq. �11�, and ��x� is
the usual step function. With account of the polarization, the

magnon Green’s function is of the following form:

G =

�

−1

�2 − �q
2 − PN��,q� + i0

=

�

−1

�2 − c2q2 − 2P0��,q� + i0
.

�18�

The condition of stability of the ground state is the ab-
sence of poles of the Green’s function at imaginary � axis.
Hence, this condition is c2q2�−2P0�0,q�=�c2q2 , at q
� pF. Doping x does not appear in this criterion. Thus, as it is
stated in Eq. �8�, the Néel state is stable at small doping if
��1, and it is unstable at arbitrary small doping if ��1.
The instability criterion was first derived in Ref. 48 and then
discussed many times, see e.g., Refs. 30 and 32. We have
rederived it here just to demonstrate how the effective action
technique works in the known situation.

IV. THE SPIRAL GROUND STATE IN THE MEAN-FIELD
APPROXIMATION

At ��1, the minimum energy is realized with the copla-
nar spiral

n�0 = �cos Q · r, sin Q · r, 0� , �19�

where Q� �1,0� ; �0,1� is directed along the Cu–O bond. To
be specific, we assume that Q� �1,0�. Due to the holon in-
teraction with the spiral, the holon band is split in two with
�z= �1,

p,

ωq,

p+q ,ε+ω

ε

FIG. 1. Magnon-holon vertex, magnon is shown by the dashed
line
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 → −
�

2
�z +

1

2
��p +

1

2
Q�z�2

,

� = 2gQ . �20�

In the ground state, only the band with �z= +1 is populated.
Therefore, the Fermi momentum, that is the radius of the
Fermi circle in each pocket, is

pF = �2	x . �21�

The point p=0 corresponds to k= �	 /2, �	 /2� in the Bril-
louin zone. According to Eq. �20�, the center of the filled
holon pocket ��z=1� is shifted from this point by − 1

2Q, and
the center of the empty pocket ��z=−1� is shifted by 1

2Q.
Calculation of energy and its minimization with respect to Q
gives the following value:

Q =
g

�s
x . �22�

The ground state energy of the spiral state is below that of
the Néel state only if ��1.

V. THE IN-PLANE MAGNONS IN THE SPIRAL STATE

To analyze the stability of the spiral state, one needs to go
beyond the mean-field approximation and study excitations
and quantum fluctuations in the system. In this section, we
consider in-plane magnetic excitations. An in-plane excita-
tion is described by a small deviation �=��t ,r� from the
uniform spiral ground state 
Eq. �19��,

n� = 
cos�Q · r + ��,sin�Q · r + ��,0� . �23�

In the ground state, all the holons are in the pseudospin state
�z=1. The in-plane magnons do not change pseudospin;
therefore, in this section, we set everywhere �z=1. Substitut-
ing expression �23� in the Lagrangian �4�, we once more find
the diagonal and off-diagonal parts of the Lagrangian

L = L0 + L1,

L0 =

�

2
�̇2 −

�s

2
�1 +

�x

4�s
�����2

+ �
�
� i

2

��

†�̇� − �̇�
†��� − ��

†�−
�

2
+ 
�l2����� ,

L1 = �
�

��
†����2g�e� · ��� −

1

2
�̇ −

�

4
�l,���� . �24�

Here, l=p+Q /2 is shifted momentum and �. . . , . . .� stands for
anticommutator. Thus, the bare magnon dispersion is given
by the same Eq. �13� as for the Néel state, but the magnon-
holon vertex is smaller than Eq. �14� by the factor �2,

M = i� 1


�
	�2g�e� · q� +

�

2
+

1

2


�l� − 
�l + q��
 .

�25�

A calculation similar to that performed in Sec. III for the
Néel state gives the following Green’s function for the field
� that describes the in-plane magnon:

Gin =

�

−1

�2 − c2q2 − P0 + i0
, �26�

where P0 is given by Eqs. �16� and �17� with the Fermi
momentum determined by Eq. �21�. At zero frequency and at
small q, q� pF, the polarization operator is equal to
P0�0,q�=− �

2 c2q2. Therefore, the ground state is getting un-
stable �poles of the Green’s function at imaginary � axis� at
��2. This is the instability with respect to charge density
wave �CDW� or phase separation30,32 and it is fatal for the
effective long-wavelength Lagrangian �4�. Thus, the spiral
state is stable at 1���2, see Eq. �8�.

It is convenient to define the magnon spectral density as

Iin��,q� = − 4�s Im Gin��,q� . �27�

Plots of 2�Iin�� ,q� versus � are presented in Fig. 2�a� for
different values of momentum q �offsets�. The doping is x
=0.1, and �=2.7, g=1. The narrow peak is the � function
broadened “by hands” to fit in the picture size. The corre-
sponding quasiparticle residue is rather small, say for q
=0.1Q in Fig. 2�a�, the residue is Z=0.39 and it very quickly
dies out at larger values of q. The magnon “dissolves” in the
particle-hole continuum.

The q-integrated in-plane magnon spectral density

Iin��� =� Iin��,q�
d2q

�2	�2 �28�

is plotted in Fig. 2�b� for doping x=0.025, x=0.05, and x
=0.1. For zero energy the value of the q-integrated spectral
density is independent of doping and equals to Iin�0�
=1 / �1−� /2�.

To calculate the in-plane spectral density that can be ob-
served in neutron scattering, one needs to shift momenta.
The Hamiltonian describing the interaction of the neutron

spin S�N with the n� field reads

HN � S�N · n� = Sz
Nnz +

1

2
�S+

Nn− + S−
Nn+� . �29�

After the substitution of the in-plane excitation 
Eq. �23��,
the above Hamiltonian reads

HN �
1

2
S+

Ne−i�Q·r+�� +
1

2
S−

Nei�Q·r+��

→
1

2
eik·r�S+

Ne−iQ·r�1 − i�� + S−
NeiQ·r�1 + i��� ,

where k is the momentum transfer and Q the momentum
shift due to the spiral ground state. The scattering probability
for unpolarized neutrons is given by
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Iin��,k� =
1

2

Iin��,k − Q� + Iin��,k + Q�� . �30�

In Fig. 3, we show by dotted lines the brunches of linear
dispersion that correspond to the quasiparticle peak in the
spectral function Iin�� ,q� plotted in Fig. 2�a�. The dispersion
is very steep, steeper than the bare magnon velocity c, and
the corresponding intensities are very low.

VI. THE OUT-OF-PLANE MAGNONS IN THE SPIRAL
STATE

Dynamics of out-of-plane magnons are the most compli-
cated ones. Stability of the spiral state was questioned be-
cause of the “marginal” character of the out-of-plane excita-
tions if considered in semiclassical 1 /S approximation.26,30

The effective action technique allows us to resolve the prob-
lem because the technique accounts exactly all the symme-
tries.

For the out-of-plane excitation let us write the n� field as

n� = ��1 − nz
2 cos Q · r,�1 − nz

2 sin Q · r,nz� ,

and substitute this expression into the effective Lagrangian
�4�. Neglecting cubic and higher order terms in nz, we get the

diagonal and the off-diagonal parts of the Lagrangian

L = L0 + L1,

L0 =

�

2
ṅz

2 −
�s

2
�1 +

�x

4�s
�
Q2nz

2 + ��nz�2� + �
�
� i

2

��

†�̇�

− �̇�
†��� − ��

†�−
�

2
�z +

�

2
�p +

1

2
Q�z�2���� ,

L1 = − �
�

��
† �+

2
�e−iQ·r�g
Qnz − i�2�e� · ��nz� +

i

2
ṅz�

−
�

4
�p,e−iQ·r
Qnz − i � nz����� + H.c. �31�

Here, �+=�x+ i�y and the bracket �. . . , . . .� stands for anti-
commutator. According to Eq. �31�, the bare magnon disper-
sion in this case is

�b,q
2 = c2�Q2 + q2��1 +

�x

4�s
� . �32�

The interaction L1 generates the following two pseudospin-
flip vertexes shown in Fig. 4:

Ma = i� 1


�
	g
Q − �2�e� · q�� −

�

2

−
�

4

�2p + Q + q� · �Q − q��
 ,
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FIG. 2. �a� Plots of 2�Iin�� ,q� versus energy for different val-
ues of momentum q �offsets�. Iin�� ,q� is the in-plane magnon spec-
tral density 
Eq. �27��. The plots are presented for doping x=0.1,
and �=2.7, g=1. Values of q are given in units of the incommen-
surate vector Q, see Eq. �22�. �b� q-integrated in-plane spectral den-
sity 
Eq. �28�� for dopings x=0.025, 0.05, and 0.1. The parameters
of the effective Lagrangian are �=2.7, g=1.
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1

1
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q||

ω

FIG. 3. The magnon dispersion along Q. The parameters are x
=0.1, �=2.7, g=1. The out-of-plane excitation for �q��Q is shown
by the solid line and the out-of-plane excitation for �q��Q is shown
by the dashed line. The in-plane excitation is shown by the dotted
line. The quasiparticle residue decays very quickly outside of the
dome shown by the solid line. The quasiparticle residue at point 1 at
the top of the dome is Z=0.8 while the quasiparticle residue at point
4 that is outside of the dome at the same height is just Z=0.13. The
quasiparticle residue of the in-plane magnon at the same frequency
as the dome height �points 2 and 3� is Z=0.15.
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Mb = i� 1


�
	g
Q + �2�e� · q�� +

�

2

−
�

4

�2p + Q − q� · �Q + q��
 . �33�

Hence, the magnon polarization operator determined by the
vertexes reads

P��,q� =
2


�
�

l
f l�
g�Q − q�� − �

2 − �
4 �2l + q� · �Q − q��2 + g2q�

2


�l� − 
�l + q� + � − � + i0
+


g�Q + q�� + �
2 − �

4 �2l − q� · �Q + q��2 + g2q�
2


�l� − 
�l − q� − � − � + i0
� . �34�

Here, q� and q� are components of momentum parallel and perpendicular to Q, respectively; f l is the Fermi-Dirac step function
and l=p+Q /2 is the shifted momentum. Equation �34� can be transformed to

P��,q� = −
�c2x

4�s
q2 − c2Q2 +

2c2

�s
�

l
f l��gq� +

�

2
Q · �l + q/2��2

+ g2q�
2 �� 1


�l� − � − 
�l + q� − � + i0

+
1


�l� + � − 
�l + q� − � + i0
� . �35�

This form is explicitly symmetric with respect to �→−� and q→−q. Integration in Eq. �35� leads to the following magnon
Green’s function:

Gout =

�

−1

�2 − �b,q
2 − P��,q� + i0

= 
�
−1��2 − 2c2Q2q�

2

q2 �1 −
Q2

q2 � − c2q2�1 −
Q2

q2 �2

+
c2

	�2�s
�F+ + F−� + i0�−1

, �36�

Where

Re F+ =
A

4q2R��1 −�1 −
R0

2

R�
2 ��1 −

R0
2

R�
2 �� +

Q2q�
2

6q6 R�
3�1 −�1 −

R0
2

R�
2 �1 +

R0
2

2R�
2 ���1 −

R0
2

R�
2 �� ,

Im F+ = �R0
2 − R�

2 ��1 −
R�

2

R0
2 �	 A

4q2 +
Q2q�

2

6q6 �R0
2

2
+ R�

2�
 ,

A = 4g2q2 + q�
2Q2��2

4
+

2g�

Q
−

R�

q2 �4g

Q
+ ��� +

R�
2 Q2

q4 �q�
2 − q�

2 � ,

R� = � − � +
1

2
�q2. �37�

Here, ��x� is the step function and R0 is defined in Eq. �17�.
The function F− is obtained from F+ by the replacement �
→−� in R�.

We define the out-of-plane magnon spectral density as

Iout��,q� = − 4�s Im Gout��,q� . �38�

Plots of 2�Iout�� ,q� versus � are presented in Fig. 5�a� for
different values of momentum q� �offsets� and q�=0. The
doping is x=0.1. The narrow peak is the �-function broad-
ened by hands, the effective width is the same as that for

in-plane magnons in Fig. 2. The corresponding quasiparticle
dispersion �q is plotted in Fig. 3 for direction along Q, �i.e.,
q=q�, q�=0� and for x=0.1. The part for �q��Q is shown by
the solid line and the part for �q��Q is shown by the dashed
line. We do it to stress that the quasiparticle residue decays
very quickly outside of the dome. Plot of the residue is
shown in Fig. 6�a�. To illustrate intensities, we compare
points 1–4 in Fig. 3 which correspond to different branches
of dispersion with the same frequency. The quasiparticle
residue at point 1 at the top of the dome is Z=0.8 while the
quasiparticle residue at point 4 that is outside of the dome at

ε+ω

εp,

q,ω

p,ε
a b

q, ω

p+Q−q, ε−ωp+Q+q,

FIG. 4. Magon-holon vertexes with pseudospin flip, magnon is
shown by the dashed line.
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the same height is Z=0.13. The quasiparticle residue of the
in-plane magnon at the same frequency as the dome height
�points 2 and 3 in Fig. 3� is Z=0.15.

An analysis of Eq. �36� gives the following approximate
formulas for the dispersion of the out-of-plane magnon and
for the corresponding quasiparticle residue:

�q
2 �

�xQ2c2

4�s
�1 −

1

�
��1 − q2

Q2�2
+ 2

q�
2

Q2

1 + c2q2

4g2Q2

,

Z �
1

1 + c2q2

4g2Q2

. �39�

These formulas have very limited region of validity since, as
we already pointed out, at larger q, the magnon dissolves in
the particle-hole continuum. At x=0.1, Eq. �39� for �q
agrees reasonably well with the result of numerical calcula-
tion shown in Fig. 3. At the same time, the formula �39� for
the quasiparticle residue only poorly agrees with numeric
shown in Fig. 6�a�. Certainly at very small doping, Eq. �39�
is accurate.

The q-integrated out-of-plane magnon spectral density

Iout��� =� Iout��,q�
d2q

�2	�2 �40�

is plotted in Fig. 5�b� for doping x=0.025, x=0.05, and x
=0.1. It is peaked at energy Ecross corresponding to the top of
the dome in Fig. 3. Interestingly, the spectral density decays
almost abruptly to its high-frequency asymptotic value I���
→1 as soon as the magnon is dissolved in the particle-hole
continuum. The decay of the in-plane q-integrated spectral
density shown in Fig. 2 is not that steep.

VII. QUANTUM FLUCTUATIONS AND QUANTUM PHASE
TRANSITION TO THE DYNAMIC SPIRAL PHASE

(DIRECTIONAL NEMATIC)

Due to in-plane and out-of plane quantum fluctuations,
the static component of the staggered field n� is reduced,

�n� � 1 −
1

2
��2� −

1

2
�nz

2� . �41�

Expectation values ��2� and �nz
2� can be expressed in terms

of Green’s function or in terms of q-integrated spectral den-
sities

��2� = − �
q
� d�

2	i
Gin��,q� =

1

4�s
� d�

2	
Iin��� ,
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FIG. 5. �a� Plots of 2�Iout�� ,q� versus energy for different val-
ues of momentum q �offsets�. Iout�� ,q� is the out-of-plane magnon
spectral density 
Eq. �38��. The plots are presented for doping x
=0.1 and �=2.7, g=1. Values of q are given in units of the incom-
mensurate vector Q, see Eq. �22�. B: q-integrated out-of-plane spec-
tral density 
Eq. �40�� for dopings x=0.025, 0.05, and 0.1. The
parameters are �=2.7, g=1.
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FIG. 6. �a� The quasiparticle residue versus momentum for the
out-of-plane magnon for the direction along the spiral, q=q�, q�

=0. The vertical line shows the momentum where the dispersion
vanishes. The doping is x=0.1. �b� The static component of n field
versus doping. The parameters are g=1, �=2.7.

ALEXANDER I. MILSTEIN AND OLEG P. SUSHKOV PHYSICAL REVIEW B 78, 014501 �2008�

014501-8



�nz
2� = − �

q
� d�

2	i
Gout��,q� =

1

4�s
� d�

2	
Iout��� . �42�

These expressions must be renormalized by subtraction of
the ultraviolet-divergent contribution that corresponds to the
undoped �-model. The physical meaning of relations �41�
and �42� is very simple: the reduction of static response is
transferred to the dynamic response. The most important
contribution to quantum fluctuations comes from out-of-
plane excitations with momenta q�Q�x. To find this con-
tribution, we use the Green function Gout�

Zq

�2−�q
2 , where Z

and � are given by Eq. �39�. This gives

�nz
2� →

gc

	2���s
3/2�1 − 1/�

B�x ,

B =
1

2
�

0

� �
0

	/2 dtd�

��1 + c2

4g2 t�
�1 − t�2 + 2t cos2 ��
. �43�

Thus, the leading term in the quantum fluctuation scales as
��x. The subleading contribution to the quantum fluctuation
scales is x. To find it, we have performed numerical integra-
tion in Eq. �42� using q-integrated spectral densities Iout and
Iin calculated in Secs. V and VI, see Fig. 2�b� and Fig. 5�b�.
This gives

�n� � 1 −
gc

2	2���s
3/2�1 − 1/�

B�x + 2.6x . �44�

Certainly, the coefficient in the subleading x term depends on
parameters �a rather weak dependence�. The value 2.6 in Eq.
�44� corresponds to g=1 and �=2.7. The plot of �n� versus
doping x at these values of parameters is presented in Fig.
6�b�.

According to Fig. 6�b�, the static component of n� vanishes
at x=xc�0.11. This is a quantum critical point for transition
to the dynamic spiral. In this phase, there is no spontaneous
direction of the n� field, �n��=0, but the spiral direction �1,0�
or �0,1� is still spontaneously selected. In our opinion, this is
the “nematic phase” observed in Ref. 20. Clearly, the value
xc�0.11 is an approximate value. In doing the spin-wave
theory, we assume that ��2� , �nz

2��1; but then, to find the
critical point, we extend this consideration to �nz

2��1. This
extension brings some uncertainty in the value of xc. We also
would like to note that the value of xc is rather sensitive to
parameters. The main sensitivity comes from �1−1 /� in the
denominator in Eq. �44�. The value of � given by Eq. �7� is
closely related to the value of the incommensurate vector Q
given by Eq. �22�. Our estimate of xc is valid for LSCO.

At x�xc, the spin-wave pseudogap is opened. To describe
the gapped phase, we use the Takahashi approach,49 see also
Ref. 50. The idea of this approach is to impose constraint
�n�=0 using the Lagrange multiplier method. So we intro-
duce an additional term in the effective Lagrangian

�L = 
��s
2�1 −

1

2
�2 −

1

2
nz

2� , �45�

where �s is technically the Lagrange multiplier, and physi-
cally this is the spin-wave pseudogap. The value of �s must
be determined from the condition

�n� = 1 −
1

2
��2� −

1

2
�nz

2� = 0. �46�

The in-plane quantum fluctuation ��2� is only very weakly
�quadratically� dependent on the pseudogap �s. The out-of-
plane fluctuation �nz

2� contains a term that depends on �s

linearly. The term comes from the �x contribution in Eqs.
�43� and �44�.

To account for the pseudogap, one needs to replace the
expression in square brackets under the square root in B, see
Eq. �43�, by


�1 − t�2 + 2t cos2 �� +
4g

c2��1 − 1/��Q3�s
2. �47�

A simple calculation with parameters g=1 and �=2.7 shows
that the condition �46� results in the following pseudogap

�s � 2.5�x − xc� . �48�

This formula is valid only if x is very close to the critical
point. In this problem, one cannot expect a high accuracy
from the Takahashi-like approach. Therefore, the slope 2.5 in
Eq. �48� is rather approximate. Finally, in Fig. 7, we present
the plot of the q-integrated magnon spectral density Iin���
+ Iout��� for x=0.13, assuming that xc=0.11. The figure
clearly demonstrates that �s is a pseudogap since there is
some spectral weight at ���s.

The value of the critical concentration, xc�0.11, agrees
well with the available experimental data. According to Ref.
7, quasielastic neutron scattering from LSCO disappears at
x�0.12. In YBCO, for hole concentration of about 9%, there
is still a weak quasielastic scattering,20 while for hole con-
centration of about 11%, the quasielastic scattering
disappears.19 Thus in this case, the critical concentration xc is
about 10%. Another confirmation of the critical-point loca-
tion is the NMR wipeout at low temperature. The wipeout is
due to the quasistatic motion of Cu spins. The wipeout exists
only at the hole concentration smaller than 0.12–0.13.51
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20
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ω
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ω

FIG. 7. The q-integrated magnon spectral density I= Iin+ Iout in
the gapped nematic phase for x=0.13 assuming that xc=0.11.
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We would like to note that the pseudogap �s is related to
the spin sector only. It is completely unrelated to the
pseudogap observed in angular resolved photoemission
�ARPES�. In our theory, we have the small pocket dispersion

Eq. �2��. This implies that we are always working in the
ARPES pseudogap regime.

According to Eq. �48�, the critical index for �s is equal to
unity. Certainly, this is only a mean-field result since we use
the Takahashi approach. A more accurate calculation of the
critical index is an interesting problem. However, the prob-
lem is outside of the scope of the present work.

VIII. DISCUSSION AND COMPARISON WITH
EXPERIMENT

There are several points that can be directly compared
with experiment. The incommensurability vector Q is given
by Eq. �22�. It depends on the coupling constant g. Fit of
experimental incommensurability7 gives g�1 and this
agrees remarkably well with prediction of the t-t�-t�-J
model.

An important dynamical parameter is Ecross which is the
height of the dome in Fig. 3. This parameter has been sys-
tematically studied very recently in inelastic neutron
scattering.8 The experimental values are presented in Table I.
As soon as the coupling constant g is found from the experi-
mental incommensurability Q, we can fit Ecross. As we al-
ready pointed out above, the present theory is applicable to
LSCO at x�xper�0.055. According to Eq. �39�

Ecross ���xQ2c2

4�s
�1 −

1

�
� . �49�

Comparing this formula with data at x=0.07 and x=0.1 in
Table I, we find that �=2.65�1�0.1�. This value agrees rea-
sonably well with the value ��2.2 that follows from the
t-t�-t�-J model. Note that in principle, the inverse mass � can
be somewhat dependent on doping. However, the data with
error bars are quite consistent with x-independent �.

Let us also discuss the data at 0.02�x�xper=0.055 that is
relevant to the insulating phase with diagonal disordered spin
spiral. The corresponding theory has been developed in Refs.
38 and 39. The incommensurability in this case is Q
=�2gx /�s. To fit the experimental incommensurability, we
need g�0.7. This is somewhat smaller than the value in the
conducting phase. We believe that the reduction of g is due
to interaction with phonons. The point is that g=Zt, where Z
is the quasihole residue. Interaction with phonons in the in-

sulating phase can easily reduce the residue by 20%–30%.
Stability of the disordered spiral in the insulating phase is
due to localization of holes. The Ecross in this case is39

Ecross � c�3

4

Q2

�
, �50�

where � is the inverse localization length. It is worth noting
that Eq. �50� has been derived in Ref. 39 assuming that the
binding energy of a hole trapped by Sr ion is larger than the
magnon energy. The binding energy is about 10–15 meV.
Therefore, strictly speaking, Eq. �50� is applicable only at
x=0.025 since at larger x the energy Ecross is getting too big.
Nevertheless, we can try to apply Eq. �50� to the data at x
�0.055. Fitting the data from Table I, we find values of �,
x=0.025: �=0.55�0.2, x=0.04: �=0.65�0.2, and x=0.05:
�=0.75�0.2. So, there is a hint for a weak doping depen-
dence of the inverse localization length �. Most likely, the
dependence is just an imitation of the binding-energy correc-
tion to formula �50�. On the other hand, a weak dependence
of the localization length on doping is quite possible. The
above values agree reasonably well with the value ��0.4
that follows from the analysis of the variable range hopping
conductivity at a very small doping �x=0.002�, see Ref. 52.

Near x=0.12, certain La-based materials in low-
temperature tetragonal �LTT� phase develop a strongly en-
hanced static incommensurate magnetic order accompanied
by a small lattice deformation at the second-order
harmonics,9–11 see also Ref. 12 for a review. The measured
static magnetic moment �0.1 �b is substantially larger than
the value that follows from the present theory 
the unity in
the vertical scale in Fig. 6�b� corresponds to the magnetic
moment 0.6 �B�. There are also experimental indications that
the spin structure in this case is close to collinear.53 We
strongly believe that physics of these materials is somehow
related to mechanisms considered in the present paper. On
the other hand, it is clear that in this case there are some
additional effects that are not accounted for by the present
theory.

The present theory qualitatively explains the directional
nematic state discovered in underdoped YBCO at doping x
�0.09.20 For a quantitative comparison, one needs to ana-
lyze the two layer situation. This analysis has to include an
explanation of a smaller incommensurability compared to
that observed in the single-layer LSCO.

In the present work, we did not account for the supercon-
ducting pairing. The point is that at low doping; the pairing
practically does not influence magnetic excitations. From the

TABLE I. LSCO: Experimental values �Ref. 8� of Ecross versus doping x.

x 0.025 0.04 0.05 0.07 0.1

Ecross�meV��Ref. 8� 7−2
+4 15−3

+7 20−5
+6 23−7

+9 40−5
+5

Phase Insulator Superconductor

Spiral direction Diagonal Parallel

Theory Refs. 38 and 39 Present work
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first sight, this theoretical conclusion is in contradiction with
experimental findings.13,16,19 However, the newest data at
very low doping20 supports this point. Moreover, we believe
that a temperature dependence of excitation spectra observed
at slightly higher doping19 is mainly due to the pinning-
depinning of the direction of the “electron nematic” rather
than due to superconductivity. Our theory is parametrically
justified only below the critical concentration xc and slightly
above this concentration. This is the range of doping where
the magnetic excitations are independent of the supercon-
ducting pairing. Certainly, at a sufficiently low energy, there
is still some sensitivity of magnetic spectra to superconduc-
tivity. Even in the BCS mechanism phonons with ��2� are
somewhat sensitive to superconducting pairing. However,
this is a sensitivity at the energy scale that is irrelevant to the
formation of magnetic excitations. A separate question is
how the spiral and the corresponding magnetic excitations
influence the superconducting pairing. The spin-wave ex-
change mechanism for pairing of holons was suggested in
Refs. 54 and 55. The mechanism is always working as soon
as a short-range antiferromagnetic order exists in the system.
So the superconductivity peacefully coexists with spin
spirals.32 Moreover, we understand now that the pairing in
the spiral state is strongly enhanced by its closeness to the

Néel state instability driven by the parameter �. The en-
hancement will be considered elsewhere.

In conclusion, using the low-energy effective field theory,
we have considered the 2D t-J model in the limit of small
doping. Quantitatively, this consideration is relevant to un-
derdoped single-layer cuprates. We have derived the incom-
mensurate spin structure �static and/or dynamic�, calculated
spectra of magnetic excitations �Figs. 2, 3, and 5�, and con-
sidered the quantum phase transition to the directional nem-
atic spin-liquid phase. The spin-wave pseudogap is opened in
the spin-liquid phase, the q-integrated spectral density in this
case is shown in Fig. 7.
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